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We shaII consider higher approximations in the theory of strong Interaction 
of a boundary layer with an external inVIscid flow. We refine known results 
related to the problems of unsteady gas flow near an infinite plate and 
steady flow paat a semi-infinite plate (Sections 1 to 6). As a result the 
asymptotic repreaentatlons for the transverse displacement of the plate, or 
its form are found, correapondlng to a preasure distribution law of a first 
approximation. 

The influence Of Viscosity and thermal conductivity of the gas on the flow 
field near the bOdy moving with hypersonic speed, as is well known, may be 
aPPrOXiEIatelY considered on the basis of the theory of Interaction of the 
boundary layer with the externaI lnvlscld flow region [I] . If, moreover, 
the bOdy is aufilclently slender, and the Mach number A&.@pd the Reynolds 
number R- of the problem are such that thee ratio M e/ VR >I, then the 
phenomenon of strong lnteraatlon occurs, in which th% press&e field in the 
perturbed flow region ia mainly determined by the displacement effect of the 
boundary layer and depends to a considerably less extent on the form of the 
bOdy surface. lZx&nples of plane flows of this type have been considered in 
r2and 33. 

The construction of the solutions in these papers were based on the match- 
ing of the exact (self-similar) solutions of the equations of the boundary 
layer and of the equations of small perturbation theory in hypersonic flow. 
The matching process of these solutions was carried out only to a first 
approximation. As a consequence of this, there appeared aoms special char- 
acter in the behavior of the solution in the lntex%sdlate region (at the 
outer edge of the boundary layer), where the enthaIpy of *he as tends to 
zero md the dmalty lnmeaae8 without bound. In references k 2 and 31, estl- 
mates of accuracy were oarrled out for the first approxlmatlOn theory. 

me present paper 1s entirely devoted to the constructlon of higher aPPro- 
xlmatlons for these problems; or more rigorously, for problems of the asymP- 
totlc behavior of the flow field of a vlacoue heat-condupting gas behind 
shock waves, propagating acoordlng to the sams law (y -th curd y”*- 2”) in 
the limiting case of M_- = . 

1. I& us consider the One-dlmsnslonal unsteady motion of a viscous heat- 

conducting gas under the action of an lnflnlte plate, suddenly set to motion 

with a velocity having a constant longltudlnal component p . Ye a&same a 
1-m relationship for the aoefficlent of viscosity and the sPeclflce~pY 

770 



i-71 

P.1) 
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Here the velocity components u and v are taken relative to the longl- 

tudinal plate velocity y, ; the pressure P - relative to the quantity 

P,@,’ ; the densfty p - relative to the ~pert~~d flow density P, ; the 

specific enthalpy h. - relative to the quantity V,’ ; the dimensfonless 

independent variables t and y - relative to the quantities C/p_ and 

CUJPop # respectively; and finally, ~7 and y are the Prandtl number and 

ratio of specific heats of the gas, reanectively. 

Introducing on the basis of the continuity equation the function $ , 
defined by the relations 

aqqak-PU, away=p (1.3) 
we transform system (1.2) to independent variables t and 4. As a result, 

we have 

OY aY P&j)=1, -&=u, P= ‘+ ph 

The purpose of this paper , as already indicated, Is the construction of 

asymptotic solution to these equations, corresponding to the one-dimensional 

motion of a gas behind a shock wave propagating accordfng to the law 

y = &I (1.5) 

The solution is to satisfy the no-slipping condition 

U= 1 (1.6) 
and the no-heat-flow condition 

i3h I alp = 0 (1.7) 
on the plate surface $-0. Thus, the plate is assumed to be insulated. 

2. For the external part of the flow field, adjacent to the shock wave, 

the solution has the well known form 

y = PY, (v), u = 0, 21 = t-W* (Y) 

p = t-%J, (v), p = RP (v), h -- t-*9& (v) 
(24 

where the Independent variable Is 

y zz *t-” 
(2.2) 

Substituting ExPressIons (2.1) in (1.4) and keeping the dontinant terms 
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In these equations, we find the system of equatfons for the well-tiown self- 

similar motion of an invlacld gas 

3/4yG + 1/4Kl = PO', &I 13/M0' + 6) = 3/2vp,' + PO 

Roy,,’ = 1, 3/4~Y;-3/4Y,, + V,, = 0, P, = [(r--1)/y] R,,H, (“‘) 

We note that considering the gas ln the outer flow region as lnvlscid and 

non-heat-conducting 1s correct with a relative error of order t-1 , since 
the ratio of the neglected terms In (1.4) to the dominant terms Is of this 

order. 

The solution to system (2.3) must satisfy the system of boundary condl- 

tlons on the surface of the shock wave, which Is propagating according to 

Equation (1.5). In the llmltlng case of flow with w,- - , these boundary 

condltlone assume the form v,(c) I c 

3c 
Yo (c) = - 

Z(r+i)' 
P,(c)=~+, R,(c)=$ &(c)=$$) 

Here the constant c is to be determined. 
(2.4) 

For further use, It Is important to have a representation of the desired 

functions of the external flow for v - 0 . To obtain these expresslons, we 

note that the second equation in (2.2) can be integrated with the help of 

the last equation to yield 
P,R,+ = A&3 (2:5) 

The constant A,, Is determined from the boundary condition (2.4) 

(2.6) 

We use (2.5) and the remaining equations of the system (2.3); now we 

obtain wlt'lout difficulty the following expressions, valid for v - 0 : 

y, = yea + YoI~l-3/3Y + 0 (++3/3Y), & z &$/3Y + O(ylW3Y) 

v. = voo + F/,,vl-‘J/3Y + O(v3-3/3Y), H, = H,,,,Y-~/~Y + 0 (v’- 3139 (2.7) 

P, = Pocl + 0 (q 

The coefficients In these formulas are connected by the relations 

Yell = $& A1’yP,,o-l’y, 
3 

Voo = x Yoo, I/‘oI = 2 $_ 2I 
~llYpO1-liY 

Roe = Ao-ltY PO;“, Ho0 = --& A;‘yPo;-l’y (2.8) 

3. To study the Interior region 

ally done) the independent variable 

N 

of the flow field, we Introduce (as usu- 

To determine the asymptotic expansions, valid In this region, we express 

the functions of the external flow In terms of the Independent variable of 

the Inner expansion y = Nt-'13 (3.2) 

and pasa to the limit t _ ID fb fixed value of N . Using expression (2.7)~ 

we get 
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(3.3) 
y = ,914 [y,, + yolN1-~/8~t-l/2+l/8Y + 0 (t-l+l’ay)], u = 0 (t-1) 

2, = t-1/4[J& + V01N1-2/aYt-l/~+l/aY + 0 (t-1+1/8Y 
)] 9 p = t-1'2[Poo + O(P)] 

p = &N2~aYf1/aY + qt-1/2-l/aY), h = HOON-2/8Yt-'/%l/8Y + qt-'+l!aY) 

These expressions suggest the form In which to seek the asymptotic solu- 

tlon for the Inner flow region, thus 

y = tak [go(N) + t-“a+llayy, (N) + . b .I, u = q,(N) + t-l’z+l’ayu, (N) +-. .-.I 

2, = t+ 1~3, (N) + t-l’a+l’ay~l (N) + . . . ] 

p = t-1’2 [p,, (N) + t-1’2+1’8Ypl (N) + . . . ] (3.4) 
p = t-l” [pa(N) .+ t-1’2+1’sypl (N) $ . . , ], h = ho (N) + t-l’z+l’ayhl (N) -t . . w 

In fact, the matching. of the Inner and outer expansions will now be gua- 

ranteed, If In accordance with the simple form of the matching prlnclple [4], 

the following boundary conditions are satisfied for the function of Inner 

expansion at N - 0~ : 

In the first approximation 

yo(W+Yoo, uoUW-4 PO (N) -+ Pm, h(N)-,0 (3.5) 

in the second approximation 
y, (N) -a Y01N1-2’9Y, u, (N) --+ 0, ~1 (N) + 0, hl (A’) ---, H,,,,N-a’ay (3.6) 

4. Substituting into the initial eqaatlons (1.4) the expansions (3.4) 
end keeping the main terms, we obtain the system of equations for the first 

approximation, which may be written ln the form 

--1 
PO = ‘T pot20 = const, uo" + T$N~OJ = 0 

~!f!?ho"+$lho 
r-la 

+ho= 

r--lb y;=__ 3 

r PO' 
?-1NhO 

v" = 7 yo-- 47 PO 

(4.1) 

Boundary conditions for these equations are (3.5), snd also conditions on 

the surface of the Plate In the form 

u,(O) = 1, y, (0) = ho’ (0) = 0 (4.2) 
I.e. besides the satisfaction of boundary conditions (1.6) and (1.7} we 

require that the plate ln the first approximation be moved ln Its own plane. 

The formulation of the problem ln the first approximation completely agrees 

with the problem considered ln [2]. Its solution turns out to be qulte slm- 

ple. First, we note that the second equation In (4.1) integrates by a quad- 

rature. Its particular solution, satlsfylng the boundary conditions, Is 

(4.3) 
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We can then Integrate 

pressure distribution on 

this. For this problem, 

N-m. On the basis of 

N.S.Matveeva and V.V.Sychev 

the third equation. However, for determining the 

the surface of the plate there is no need to do 

It suffices to find the expression for g,(N) for 

the fourth equation In (4.1) we have 

lim ye(N) = ‘2 i h,dn’ 
.v-+oo 

(4.4) 
0 

The Integral in this expression is easily calculated with the help of the 

third equation In (4.1), if we take Into account the boundary condition for 

?I,,@) and the exponential decay to zero of this function as N - m (cf.[2]). 

As a result, we get 

Using boundary conditions (3.5), we rewrite this as 

yoo = & (&y 
The obtained relation Is just the boundary condition, which was missing 

for the equations of the outer lnvlscld flow. This condition uniquely deter- 

mines the constant c in the equation of the shock wave (1.5) and In the 

boundary conditions (2.4), and therefore, It completes the problem in the 

first approximation. 

5. Let us now turn to the problem of the second approximation. After 

substituting the expansions (3.4) in the system (1.4) and equating corre- 

sponding terms of the expansion, we obtain a system of linear differential 

equations for the functions In the second approximation. 

The second and last equations In (1.4), together with the boundary con- 

ditions (3.6), give 
Pl = 74 (POhl + hOPI) = 0 (5.1) 

After this, on the basis of the first equation in (1.4) and boundary con- 

dition (3.6) for u, we find that IQ= 0 . 

Then the equation for determining the function h,, after some simple 

transformations using (5.1) and the results of the first approximation, 

assumes the form 
r--1 I ++%'+&=O 
r PO h # (5.2) 

Its solution must satisfy the last boundary condition In (3.6), and also 

condition (1.7) on the insulated surface 

hl (N) -> H,,oN-2'3Y, hl’ (0) = 0 for N-too 

Finally, the equation for function I/, has the form 

r--lb yl' z7.Y - - 
T PO 

where the function I/~(N) must satisfy the first boundary condition (*) in 

l ) See footnote on the next page. 
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Integrating successively (5.2) and (5.41, we find the value of the func- 
tion y,(O), which determines the transverse displacement of the plate 

y=:t %+%Yyl (0) (5.5) 

We note, that in obtaining the equatllons of the second approximation, in 
the initial equations were neglected terms whose ratios to the terms kept 
were of the order of t-‘k +%u while in the expansions (3.4), on the basis 
of (3.3), the highest order in’ the neglected terms was g-1!z_ Thus, the solu- 
tion of the problem in the seconq approximation Is correct with a relative 
error of the order t-1 + %Y or t-la, while the relative error of’the first 
approximation is cf order t-‘/9 +‘l3y_ 

6. Numerical calculations were carried out for values of ~11.4 and 
# = 1.0. 

The system of equations (2.3) for the outer flow field was integrated 
with the aim of determining the constants in expressions (2.7) by the Runge- 
Kutta method. Equation (5.2) with boundary conditions (5.31, governing the 
enthalpy distribution In the boundary layer, was solved by an approxzlmate 
iteration method. The calculation of the flow field in the inner region 
(integration of (4.1)) has not been carried out. 

The constants c , which define the propagation of the shock wave, and 
p. the pressure variation on the surface of’ the plate, were found as follows: 
c = 1.1082, &,= 0.3432 . 

The value of the constant r/t(O), transverse 
displacement of the plate was found 

7. The equations of plane steady flow of a viscous heat-conducting gas 

may be written in the following nondimensional form: 

(T.l) 

Here the components of th velocity are taken relative to the velocity of 

the unperturbed stream U, , the pressure - relative to the quantity ~,lf,‘, 

(where ~Q,U_~ is the dynamic pressure), the density - relative to the den- 

sity of the unperturbed stream p, , and the specific enthalpy - relative 

to the quantity U_,,” . The independent variables are taken relative to the 

characterlstlc length 
L = cu,IE>Cn (7.2) 

Here c is the proportionality constant in the relation between the vls- 

coslty coefficient and the enthalpy, which we again take to be linear (1.1). 
- 

*) It Is easily verified that the asymptotic character of the behavior of 
the Inner ex EinSlon fUIICtlonS as 81 - m 
dltlons (3.5 P and (3.6), 

, prescribed by the boundary con- 
completely agrees with that which follows from a 

direct analysis of the differential equations for these functions. 
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Introducing the stream function + , defined by the relations 

ag/ax = - pv, agtag = pu (7.3) 
we transform Equations (7.1) to the Independent variables x and $ 

au 
puT@=l, +=v, P’ F ph 

The problem will cons1s.t In the construction of the asymptotlc.solution 

of these equations, corresponding to the steady flow of a gas behind a shock 

wave with the shape y zzz ci/* (7.5) 
and satisfying boundary conditions on the thermally Insulated semi-Infinite 

surface c-0, whose shape 1/ - y(r) Is to be found. These conditions will 

have the form 

u=v=o, ah 
a3 = 

f’ t5) ah J ax 
P [i + r8 (41 

(7.6) 

8. We start with the asymptotic expansion, valid for the outer part of 

the flow, and again confine ourselves to the approximation In which this 

part of the flow may be treated as invlscld. We write the expansions In 

this region In the form 

y = E"' [Yo (v) + f”YI (Y) + . * * I, u - 1 = E” [U, (Y) + pu1 (Y) + . * . J 

u = p [V, (v) + pv, (Y) + . ..I. P=~-“~[~,(~)+~-“zP1(~)+~~~] (8.1) 

p :- R, (Y) + pv?, (Y) + * * * 1, h = g+ [H, (Y) + pH, (Y) + . * * 1 

where the Independent variables 5 and v are defined by the relations 

x= E, * zz, E"n = E" [y + E +Yl(Y)+ . ..I (8.2) 

Here the expansion Is made In one of the Independent variables in order 
to obtain (following the method of [5]) the solution to the external lnviscid 
flow valid in the entire flow field, InaZudlng the vlalnlty of the$plate 
surface. This Is necessary because in contrast to the problem considered In 
the first part of this paper, the first terms of expansions (8.1) would 
represent not the ex&ct solution to the outer lnvlscld flow, but otiy its 
approximate solution, poeseaslng etngulkritles which are not Characteristic 
for the exact solution when v - 0 
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9s (8.2) we omifn the foll~uing Formlas P5r the derfvativea 

a a 

(31: = a5 
- +-1vg +~g"(~~pI'-~Y1)~+... 

_$ = rg:* _g _ p yl’ _& - . . , (8.3) 

The boxan- conditions for the outer solution are the conditions on the 

shock wave (T.5)r which in the 1Mting c&se X_-+ - are 

Substituting the expansions (8.1) and (8.3) into the initial eystem of 

equations (7.4) and t&f! boundary con&ltions (8.&) and keep3.r~ the dQtin&nt 
terms, we obtain systems of differential equation3 and b5undSW ~OniIitIOns 

for the first approx%mation. They are completely equlvslent to the problem 

of Inviscid unsteady one-dimensional flow (2.1) and (2.4), considered ln the 

first part of this paper. Thus, substltutlng the Independent varilable t by 

5 , we may use the torresponding f513uW4s of Section 2 without any change. 

For the Zongitud%nal component of the veXOoity fn the first appr5xisHfon 

we have 
uO+y+~+O P.5) 

From this 

9. The equat&ns of the second approximation, after some sfmple trans- 

formations us%ng the relations of the first approx%mation, may be written 88 

v",+v,v1+ H,+'MV =I 0 

"14 (YV,)'--s/q(VY1) -l/*Y*f v,' = P1'--Y;P~ WI 

"izvz(PI/Po--yRIIIio)'+Y(-P1iPg-r~lIlio) = -(+V--f/s~*) 

Y1'++-(L%+g)= YI’YD 

QVY 1’ - f/4Y1 + VI - v,uo = S/4 (VYl’ -'"/3Y1) Y* 

pi+ (e_al -I- Hal) 

fn order to eHm%nate in the seoond appretion the entrOpy s%ngulari- 

ties (as v - 0) of the order higher than in the first approxQ%itkon, we nmy 

follow the method OP [5] and set in the fourth equation of (9.1) 

(9.2) 
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Then this equation becomes 
I->’ = 0 (9.3) 

Now, these two equations, together with the remaining equations of (g.If, 
form a closed system. The boundary conditions for these equations, by (8.4), 
can be written as 

up1 (c) = 0, Y1 (c) = 0, C’1 (c) = &T;y If , V1(c) = - 27c3 
32 (r + $1 

PI w = - 123%) , K1 (c) = 0, HI(C) = - 
84yc4 

CB (T + fP (9.4) 

The first of these boundary conditions eliminates the shifting of stream- 

lines at the vicinity of shock wave. Equation (9.3) together with condition 

(9.4) gives Y,(Y) = 0 @5) 

The second equation in (9.1) may now be integrated. Its solution sstis- 

fying the boundary conditions (9.4) has the form 

_ - r R1 = -- .L C%y-‘iJ - - Pl 

&I i6 
; @UT1 (Y) (9.6) 

The s~~t~eous’~ons~derat~on of Equation8 (9.1), (9.21, (9.5) and (9.61, 

together with the results of the first approximation (2.5) and (2.7), permits 

us to determine the behavior of the functions of the second approximation as 

v-0. Their approximate representation In this region will have the form 

Y\fpI = \r&P’f~ “+” 0 (VI-al=) ) u1 = fJ,grzf8-2/3~ + 0 (y-49 

VI = vlo~-2!3y + 0 (+-p/y, PI = 0 (Y”) (9.7) 

RI = R10~-2/3+2/3-f + 0 (v”), HI = j$10v-2/3-2/3Y + 0 (y-WY) 

where the coefficients In these formulas are related with the ooefficients 

of the functions of the first approximation (2.8) through the,relatlons 

Y&l = - t u 10 = - 

‘v10= -- 3-f 4 (r - 1) Ao”/YV 00 p 00 l-l/y , R 10 = - ;; 16 r) AO_‘~“Po;!y 

ffl0 = 
6rc.l” t-t/Y 

$6 (7 - iIf2 - r) Ao’,YP 00 

in which the constant ~~ i s determined by Equation (2.6). 

10. In the inner flow region the dimensionless independent variable of 

the order of unity IS N z q$-" (10.1) 

To determlne the form of the solution in this region, we express the func- 

tiona of the outer flow in terms of the independent variable of the inner 

expansion n =: NE-+ (10.2) 

and we consider their behavior as 5 - Q for fixed value of N . To this 

end, ‘we first substitute In (10.2) the expansion for the independent varia- 

ble n (8.2) and find the following relationship between the Independent 
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9s (8.2) we obtain the following Formulas for the derivatives 

a a 

(31: = a5 
- - $g-"vg +~g"(VYI'-+g~ + *.. 

j?$ = rg:* _g _ p yl’ _& _ . . , (8.3) 

The boundaqr conditions for the outer solution ari? the conditions on the 

shock wave (1.5jr which in the 1Mting case X_-+ = are 

T2=C > y z.2 cp, 24 - 1 zzz - 

Substituting the exp8nsions (8.1) end (8.3) into the initial Bystem of 

equations (7.4) and the boundary conc5ltions (8.4) and keepS.ni3 the dc@nant 

terms, we obtain systems of differential equation3 8nd boundaX sOndltIons 

for the first approx%mation. They are completely equlvslent to the problem 

of lnvilscld unsteady one-dimensional flow (2.1) and (2.4), considered ln the 

first part of this paper. Thus, substltutlng the Independent variable t by 

5 , we may use the torrespondlng formulas of Section 2 without a%? change. 

For the Zongitud%naZ component of the veXooity fn the first approxisHfon 

we havs 
uO+y+~+O P.3 

From this 

UQ = U**V-2~~~+- O(Y") focv+o 
( 
qoo= - h Aolh’&t~y 

1 (8.6) 

9. The eq,uatUns of the second approximation, after some sfmple trans- 

formations us%ng the relations of the first approx%mation, may be wrS.tten 88 

v",+v,v1+ H,+'MV = 0 

fn order to eHm%nate in the seoond apprux5mation the entropy s%nguBiri- 

ties (as v - 0) of the order higher than in the first approxlmatkon, we lsay 

follow the method of' [5] and set in the fourth equation of (9.1) 

(9.2) 
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11. Substituting expansion (10.5) in the Initial system of equations 

(7.4) and equatinf the main terms, we obtain a system of equations for the 
firat approximation, which may be written as 

(11.1) 

Boundary conditions for these equations are (10.6) and also the conditions 

on the solid surface, which by virtue of (7.6) and (7.7), can be written as 

yo (0) = U" (0) = h,' (0) -= 0 (11.2) 

i.e. we assume that in the first approximation the body is a semi-lnflnlte 

flat plate. If the Prandtl number o I 1 , then the integral of the equa- 

tion of heat Influx satisfying the boundary conditions (10.6) and (11.2f 

will be h o+ 
11 
'ZUO 

2 _= l! 
'2 (11.3) 

Below we shall consider only this case. The momentum equation then 

reduces to the form 

where in accordance with the third of the boundary conditions (10&f, pe-&. 

Boundary conditions for (11.4) are the second conditions In (10.6) and 

(11.2) (*). After determining u,(N), the function P,(N) Is found by inte- 

grating the fourth equation in (ll.l), which with the aid of (11.3) and 

(11.2) gives 

(11.5) 

Finally, the first boundary condition in (10.6) leads to the relationship 

(11.6) 

*) We note that by Introducing the variables 

EquatZon (11.4) may be reduced to the well-know form 

with the boundary condltlons 

dfo 

f”=x=o for q = 0, 
d/o 
-q+l for q---t CQ 
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in which the integrand is parametrically dependent on poo . Thus (11.6) is 

the necessary boundary condition for the outer problem in the first approxi- 

mation, relatirg ti quantities & 8x13 poo , Thereby, it uniquely determines the 

constant 0 , I.e. the shape of the shock wave, and completely closes the 

system of relations In the first approximation. The problem of the flow past 

a semi-infinite plate in this formulation was solved in. C3], 

12, We now turn to the second and third approximations. First OS all, 

by virtue of the second equation in (7.4) and the boUndary 

we have 
P1= T+ hh + hpl)= 0 

The third equation in (7.4), after some transformations 

relations obtained for the Slrst approximation, integrates 

h, + u&Q = 0 

condition (10.7), 

(12.1) 

and using the 

into 

(12.2) 

This solution satisfies boundary condltlr .s (10.7), since RoloaS uoO- 0 

according to (2.8) and (8.7). It also satisfies to the necceesary order of 

the approximation the boUndary conditions on the wall, which Is easily veri- 

Pied by substituting the expansions (10.5) into (7.6). 

Now the first of the momentum equations (7.4), after some maMPUlatiOnS, 

leads to the SollowIng equation for the function uI : 

The boundary conditions for it are the second condition in (10.7) and the 

no-slip condition (7.6), i.e. 
a1 (0) = 0, Ldl (N) -+ uo,iv-8’3y 

for Ne=ca (12.4) 

Finally, the function n(F) satis- 

,Siee Equation 

The boundary condition for it is the 

first condltlon In (10.7) (+). 

fU( 
As a result of IntegratSng (12.4) 

we ffnd the value of the function pg (0) 

Pig. 1 at the wall, defining the shape of the 

wall In the second approximation. 

SimilarlY, we Slnd the agstem of equations for the third approximation: 

integrals 

(12.5) 

*) We note that the aBymptotlc behavior of all the fUnotlOn8 of the Inner 
expanelon, as prescribed by the boundary condition (10.6) to (10.8), agreea 
completely with the behavior found from considering the difierentlal equa- 
tions for these functions. 
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differential. equation for the function us(y) 

In 

boundary conditions 

u2 (0) = 0, 242 (N) - ($ Y;loUo, + q iv-2’3-a’3y for iv -9 co (12.7) 

equation for the function 

(12.8) 

The solution of this equation must satisfy the first condition in (10.8). 

the end we can find the value of the funotion I/*(O), 

In this manner, the.required shape of the wall, at which the pressure 

distribution attributed to a semi-infinite plate (Section 11) is realized, 

has the form 
(12.9) 

We note that this m?fWlt, In accordance with the estimates of the neg- 

lected terms made before, has a relative error of the order &-lf%r or g-'/e, 

while the first approximation contains a relative error of order ~Aj~+*:sY, 

13. As an example .we calculated the viscous flow field for y ID 1.4 
and o = 1,O . 
as well as the 

The values of the parameters defining the shape of the shock 

hC33t u - 1. 938 f 
reaeure dlatrlbution 

and pO'- 0.6268. 
were taken from the solution obtained 

Integration of Equation (11.4) was carried out by the method of iteration. 
and was presented in the form 

1 - I 1 1 + UO(k-1) IT- --- -- 
4 

~i+uo(k-,i=O 

r uo$c-l) 
‘o(k) + 

4 7 
Uo (?+u 

(13.1) 

and 85 the first approximation for %(k) a linear function was applied. 
The convergence of the lter- 

j* Y 
ations was defined by the esti- 

2_ mate 
-/ 

D 
$ 1 % ;k-1, - uo;k) I < 8. 

.w a? t h-1 

Fig. 2 
e = 0.0~~ (13.2) 

To integrate Equation 
in each approximation and also to integrate Equations (12.3) and (12. A 

13.1) 
), 

the method of Iteration was applied. 

The calculated results for the Anner (viscous) region of the flow are 
shown in Pigs. 1 to 5. The body shape In the first approximation Is curve 
1, that for the second epproxinratlon is curve 2. 

A8 is clear from Fig.1, at sufficiently great distances from the leading 
edge, the contribution of the term which takes 3.nto account the entropy 
effect in the outer flow core becomes unessential. 

The shapes of the front part of the body are shown In Fig.2. 

The profiles of velocrity, enthalpy, and density are given, respectively, 
In Pigs. 3 to 5 a8 a function of the veritable YE-% for values of 5 = 10, 
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loo and 1000. There are also shown the results of the first ap roximation 
[33, corresponding to the limiting self-similar solution (5 - m P . 

This study shows that consider%ng the problem of hypersonic viscous gas 

flow with Mach number #,- 5 past a slender body as problems in the strong 

Interaction of a boundary layer at the body surface with the inViSCid flow 

field region, permits us to solve 

24 this problem to a higher degree of 

approximation than has been done 

thus far. Further refinement of 

the results obtained (determining 
16 subsequent terms in the asymptotic 

expansions) leads to the necessity 

of considering viscosity in the 

outer flow field, and considering 

additional terms in the equations 

(ordinarily neglected in boundary 

layer theory) in the inner flow. 

However, 88 Shown In [l and 61, 
D 20 10 60 such a detailed consideration, 

Pig. 5 strictly Speaking, is invalid, 

since the order of the terms con- 

sidered in the Navler-Stokes equations will be the 88me as the order of the 

Burnett terms, which are not Included. 

Using the method of matching inner and outer expansions (as is done in 

the second part of this paper) together with the method of PLK, apparently, 

can solve many other problems in which the inner limit of the outer asympto- 

tic solution becomes singular. 
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